

Long-term Effects of Viral Meningitis on Memory, Brain Function and its Impact on Brain Regions.

Salwa Ahmed Amer Elshetehy,¹

Abstract:

Viral meningitis is often less severe than bacterial meningitis, but it can lead to long-term cognitive and neurological impairments. This literature review aims to evaluate evidence for long-term cognitive, neurological, and psychosocial sequelae of viral meningitis, with a focus on affected brain regions and underlying inflammatory mechanisms. Key regions, including the hippocampus and prefrontal cortex are discussed in relation to memory deficits, executive dysfunction, and potential hypothalamic-pituitary axis disturbances in recovered patients. These findings emphasize the lasting impact of viral meningitis and support the need for more research into post-infection neurological and psychological outcomes.

Keywords: [viral meningitis, cognitive dysfunction, memory impairment, hippocampus, prefrontal cortex, hypothalamic-pituitary axis, post-infection outcomes]

Introduction:

Meningitis is a disease that causes inflammation in the membranes covering the brain and the spinal cord, called the meninges. In some cases, it may extend to the brain parenchyma and ventricles. It can be caused by viral, bacterial, or fungal pathogens as well as certain noninfectious drugs. Symptoms such as fever, headaches, and vomiting are common with many other conditions, often making early diagnosis difficult and leading to misdiagnosis [2,8].

The two most common types of meningitis—across all ages—are viral and bacterial, with the latter generally more severe. Viral meningitis is usually caused by viral infections such as Varicella-zoster virus (VZV), Herpesviruses, and Enteroviruses, while bacterial meningitis is usually caused by *Streptococcus pneumoniae*, *Neisseria meningitidis*, and *Haemophilus influenzae* [2]. Although viral meningitis is less severe than bacterial meningitis, it can lead to

serious neurological complications, including memory deficits, brain function impairment, and behavioral and psychological changes [1,7,9,10].

Recent studies have shown that even patients with mild viral meningitis can experience long-term sequelae [1,8]. Because symptoms are often milder and may resolve on their own, many cases remain undiagnosed, making its long-term consequences harder to address compared to bacterial meningitis [2,8].

Despite its clinical importance, viral meningitis has received less research attention than bacterial meningitis, particularly regarding the lasting physical, cognitive, and psychological sequelae [1,7,9]. Understanding these outcomes is important for younger patients and working adults, as these lingering neurological issues, such as memory loss, fatigue, and impaired attention, can disrupt education, employment, and daily life [7,9].

This review summarizes current evidence on the long-term neurological, cognitive, and psychosocial effects of viral meningitis. We will highlight key brain regions affected, such as the hippocampus, which is essential for memory formation, encoding, and retrieval; the prefrontal cortex, which regulates executive functions including decision-making, working memory, and attention; and the hypothalamus, which modulates stress response and homeostasis [4,5,6]. We will also discuss potential mechanisms of damage, clinical outcomes, and research gaps that should be addressed in future studies.

Neurological and Cognitive Sequelae

Memory and Cognitive Changes:

Cognitive dysfunction is a well-documented sequela of viral meningitis, even in patients who presented mild disease. Prospective cohort studies documented many patients reporting incomplete recovery. Schwitter et al. (2024) provide prospective evidence that long-term cognitive and somatic complaints are common even after clinically mild illness. Petersen et al. (2023) show that approximately 20% of patients have incomplete early recovery, emphasizing the need for long-term follow-up beyond the initial month post-discharge.

Imaging studies, such as Liu et al. (2023), report hippocampal metabolic changes that correlate with cognitive scores, supporting hippocampal vulnerability through objective imaging. These findings support the existence of long-term effects—but differences in sample size, follow-up duration, and testing methods produce heterogeneity across studies.

Deficits most frequently involve memory, both short-term recall and long-term consolidation, reflecting hippocampal vulnerability to virus-induced neuroinflammation. Other difficulties include impaired concentration, reduced mental flexibility, and slower information processing, indicating disruption of frontal cortical networks [5,6]. Such impairments hinder daily activities, and patients often struggle with tasks that require attention or multitasking. This can challenge their academic and occupational performance [1,7,9]. In some cases, patients may experience fatigue and recurrent headaches, further limiting productivity and delaying a full return to pre-illness functioning.

The impact of these deficits extends beyond clinical settings, showing how viral meningitis can negatively affect the quality of life long after physical recovery. Previous studies have emphasized the importance of neuropsychological testing to identify subtle impairments that may otherwise remain undetected [1,9]. Early recognition and intervention are critical to improving long-term outcomes.

Brain regions affected:

Neuroinflammation associated with viral meningitis can affect multiple brain regions, particularly those critical for memory and executive functions. The hippocampus, essential for memory processing, is especially at risk. Imaging and clinical studies have reported hippocampal atrophy—shrinkage of the hippocampus—and metabolic alterations linked to both short-term and long-term memory dysfunction. Liu et al. (2023) provide neuroimaging evidence of hippocampal metabolic disruption linked to cognitive dysfunction; however, as a small VZV-specific case series, its findings require replication in larger and more diverse cohorts.

Other regions may also be implicated. The prefrontal cortex, which supports higher-order cognitive processes like decision-making, attention, and problem-solving, may be disrupted by the inflammation, leading to executive dysfunction [5]. The hypothalamus, a key regulator of stress response and homeostasis, can also be affected, leading to endocrine and behavioral disturbances [4].

Identifying which brain regions are most affected is necessary for understanding how viral meningitis causes neurological and cognitive impairments, but our knowledge is still limited.

Behavioral and Psychosocial Outcomes:

Beyond measurable cognitive deficits, many patients recovering from viral meningitis report behavioral and psychosocial challenges. Fatigue, recurrent headaches, and mood disturbances are the most common, affecting their everyday routines [1,7]. These symptoms cause difficulty returning to school or employment, and some patients experience delayed or incomplete recovery of normal daily activities. As Imishti et al. (2025) found, around one-third of patients were unable to fully return to work six months after illness, though the retrospective single-centre design may have influenced these estimates.

Similarly, Balint et al. (2024) found through interviews that survivors described fatigue, frustration, and emotional instability as negatively affecting their daily lives. While Imishti quantified functional limitations, Balint captured the emotional side of recovery, showing that mental recovery often lags behind physical recovery.

These findings align with Scanferla et al. (2020), who noted that survivors frequently face “invisible” disabilities—such as cognitive haze and low motivation—that can strain relationships, often leading to emotional overload. They tend to depend on family members, lacking independence and self-confidence. Overall, these effects contribute to a worsening quality of life that can persist from months to years after the acute illness. But some of the studies rely on self-reported experiences, which can exaggerate or overlook certain symptoms.

Objective neuropsychological testing remains limited in this area. Including both self-assessment and clinical evaluation would provide a clearer picture of how psychological and neurological recovery interact.

Some studies mention that effects may differ by demography. Petersen et al. (2023) and Schwitter et al. (2024) both note sex-based differences, with women more frequently reporting fatigue and psychological complaints, while men showed slightly higher rates of neurological deficits.

Likewise, Imishti et al. (2025) observed that women were less likely to return to full-time work after recovery, suggesting that biological and social factors may influence outcomes. These patterns highlight the need for further demographic-focused analyses in future research.

These findings emphasize that the lasting consequences of viral meningitis span cognitive, behavioral, and endocrine domains. This indicates that recovery from viral meningitis is not always complete and can affect daily life long after the illness. Table 1 summarizes outcomes observed or reported in the literature; percentages and incidence rates vary among studies.

Table 1
Key long-term outcomes of viral meningitis

Outcome	Key Findings	References
Cognitive Dysfunctions	Memory impairment (short-term and long-term), executive dysfunction, and reduced attention.	[1,6,7,9]
Behavioral/Psychological	Fatigue, mood disturbances, difficulty returning	[1,7,9,10]

	to work or school, and emotional instability.	
Brain Regions Affected	Hippocampus (memory), prefrontal cortex (executive function), and hypothalamus.	[4,5,6]
Endocrine Dysfunction	Mild hypothalamic-pituitary axis disruption, altered ACTH and cortisol levels	[4]
Overall Long-term Effects	Cognitive, functional, and psychosocial impairments.	[1,7,9]

Pathophysiological Mechanisms

Neuroinflammation and Immune Response:

Neuroinflammation is a central mechanism linking viral meningitis to long-term neurological outcomes. Elevated inflammatory markers such as C-reactive protein (CRP) and pro-inflammatory cytokines during the acute phase can disrupt synaptic plasticity and impair neuronal connectivity and memory consolidation [3]. These processes contribute to cognitive dysfunctions observed after recovery.

Experimental models such as O'Reilly et al. (2007) show that systemic inflammation affects the CNS immune responses, while Farmen et al. (2021) describe microglial

activation and synaptic injury pathways; together, they suggest that prolonged or exaggerated immune activation may worsen hippocampal vulnerability, causing structural and functional changes that go beyond infection resolution. They suggest that inflammation-driven mechanisms may also underlie persistent deficits, though translation from animal to human data remains limited.

Schwitter et al. (2024) observed that many patients continued to experience these difficulties months after recovery, even in mild cases. Farmen et al. (2021) linked such persistent deficits to prolonged immune activation, suggesting that inflammation acts as a bridge between infection and neuronal injury. Both further support that inflammation is not just an early immune response but may also drive long-term neural dysfunction.

However, most evidence remains indirect. Few studies have measured inflammatory markers, such as CRP and cytokines, during the recovery phase, so it's unclear whether inflammation persists or re-emerges later. Understanding this process is crucial, as lingering inflammation in areas like the hippocampus and prefrontal cortex may explain the sustained memory and attention deficits seen in patients. If confirmed, this could guide future use of anti-inflammatory or neuroprotective therapies to limit chronic neurological damage.

Endocrine dysfunction:

Viral meningitis may also disrupt the hypothalamic-pituitary-adrenal (HPA) axis by producing hormonal imbalances that contribute to long-term symptoms. Some patients report altered adrenocorticotropic hormone (ACTH) and cortisol levels, indicating mild HPA axis dysfunction [4].

These endocrine changes are linked to fatigue, stress intolerance, and cognitive and psychosocial difficulties. Dhanwal et al. (2011) noted similar hypothalamic-pituitary axis dysfunction in other CNS infections, yet longitudinal endocrine monitoring after viral meningitis remains limited.

Gaps in Current Research:

Current research on long-term outcomes remains limited and understudied. Few longitudinal studies track patients for the first months post-infection, leaving long-term outcomes years later unexplored. As a result, subtle or progressive deficits may go completely unnoticed. Future studies should focus on extending follow-up periods with standardized testing to capture changes over time.

Neuroimaging evidence remains limited, as most studies rely on self-reports or brief clinical observation. Only a few studies use MRI or MRS to correlate cognitive symptoms with brain structure or metabolism. More neuroimaging and functional studies are necessary to visualize brain alterations in key regions such as the hippocampus and prefrontal cortex [5,6].

The neuroendocrine aspects are rarely addressed in modern studies. Research rarely examines HPA axis dysregulation and its link to fatigue and cognition [4]. Long-term hormonal monitoring could clarify these associations.

Some studies noted that demographic and sex-based differences may lead to different outcomes, with women and young adults occasionally reporting slower or incomplete recovery [7,8]. However, most existing data are inconsistent, and there's very little on age, socioeconomic status, comorbidities, or lifestyle factors affecting outcomes.

The literature mainly focuses on adults, as data on children and adolescents are sparse. Given that developing brains have higher plasticity, understanding recovery mechanisms in younger populations could guide early interventions.

Finally, while inflammation is a recognized key trigger, the specific pathways linking immune response to long-term cognitive dysfunction remain unclear [3,5]. Future work could combine biomarker analysis (CRP, cytokines), imaging, and neuropsychological testing to clarify the causes and biological mechanisms behind long-term sequelae.

Conclusion:

This review highlights that viral meningitis, though often described as a mild condition, can have a lasting effect on the brain. The evidence suggests that even after recovery, patients may suffer from neurological, functional, and psychosocial disturbances. They frequently experience difficulties with memory, attention, and executive function, which may reflect changes in key regions such as the hippocampus and prefrontal cortex. Across studies we reviewed, a consistent pattern emerges: neuroinflammation and disrupted signaling may be associated with these outcomes.

However, while bacterial meningitis is widely studied and acknowledged for its severe sequelae, the long-term consequences of viral meningitis are often underestimated. Recent findings indicate that fatigue, concentration issues, and emotional instability are common and enduring aspects of post-viral recovery.

Recovery appears to vary by demographic factors. Studies suggest that women may experience more persistent fatigue and emotional challenges, while younger patients could benefit from greater neural resilience but remain at risk of hidden cognitive deficits. These variations imply that recovery is influenced not only by biology but also by social, environmental, and lifestyle factors.

Recognizing these patterns is essential for better patient care. Long-term monitoring, cognitive screening, and psychological support should be integrated into post-recovery follow-ups, especially for working adults and students who struggle to regain full function.

Future research should expand longitudinal studies, explore neuroendocrine and inflammatory pathways, and include children and adolescents to better understand how viral meningitis shapes the brain over time. Understanding these mechanisms can help guide earlier interventions, improve rehabilitation strategies, and raise awareness that viral meningitis is often clinically underestimated.

References

1. Schwitter, J., Branca, M., Bicovic, A., Abbuehl, L. S., Suter-Riniker, F., Leib, S. L., & Dietmann, A. (2024). Long-term sequelae after viral meningitis and meningoencephalitis are frequent, even in mildly affected patients: A prospective observational study. *Frontiers in Neurology*, 15, 1411860. Retrieved from <https://pubmed.ncbi.nlm.nih.gov/39087005/>
2. Kohil, A., Jemmeh, S., Smatti, M. K., & Yassine, H. M. (2021). Viral meningitis: An overview. *Archives of Virology*, 166(2), 335–345. Retrieved from <https://pubmed.ncbi.nlm.nih.gov/33392820/>
3. O'Reilly, T., Østergaard, C., Vaxelaire, J., & Zak, O. (2007). Systemic inflammation alters the inflammatory response in experimental lipopolysaccharide-induced meningitis. *Clinical and Experimental Immunology*, 147(1), 112–119. Retrieved from <https://pubmed.ncbi.nlm.nih.gov/17177970/>
4. Dhanwal, D. K., Kumar, S., Vyas, A., & Saxena, A. (2011). Hypothalamic pituitary dysfunction in acute nonmycobacterial infections of central nervous system. *Indian Journal of Endocrinology and Metabolism*, 15(Suppl 3), S233–S237. Retrieved from <https://pubmed.ncbi.nlm.nih.gov/22029029/>
5. Farmen, K., Tofiño-Vian, M., & Iovino, F. (2021). Neuronal damage and neuroinflammation: A bridge between bacterial meningitis and neurodegenerative diseases. *Frontiers in Cellular Neuroscience*, 15, 680858. Retrieved from <https://pubmed.ncbi.nlm.nih.gov/34149363/>
6. Liu, H., Wang, J., Yuan, Y., Gu, J., & Yan, Y. (2023). Hippocampal metabolic alterations and cognitive dysfunction in varicella zoster virus meningitis: A single-center case series study. *Medical Science Monitor*, 29, e939670. Retrieved from <https://pubmed.ncbi.nlm.nih.gov/37165595/>
7. Imishti, A., Nissen, M. J., Øvrehus, A., & Larsen, L. (2025). Ability to return to work and persistent symptoms six months after viral meningitis: A retrospective single-centre cohort study. *Infectious Diseases, Advance online publication*, 1–10. Retrieved from <https://pubmed.ncbi.nlm.nih.gov/39943919/>

8. Petersen, P. T., Bodilsen, J., Jepsen, M. P. G., Larsen, L., Storgaard, M., Hansen, B. R., Helweg-Larsen, J., Wiese, L., Lüttichau, H. R., Andersen, C. Ø., Nielsen, H., & Brandt, C. T. (2023). Clinical features and prognostic factors in adults with viral meningitis. *Brain*, 146(9), 3816-3825. Retrieved from <https://doi.org/10.1093/brain/awad089>
9. Balint, C., Deary, V., & Rodrigues, A. M. (2024). Life after meningitis: a qualitative study exploring survivors' experience of living with sequelae. *Psychology & Health*. Retrieved from <https://doi.org/10.1080/08870446.2024.2373371>
10. Scanferla, E., Fasse, L., & Gorwood, P. (2020). Subjective experience of meningitis survivors: a transversal qualitative study using interpretative phenomenological analysis. *BMJ Open*, 10, e037168. Retrieved from